Страница публикации

On the Stability of One Permanent Rotation in a Neighborhood of the Appelroth Equality

Авторы: Novikov M.A.

Журнал: Mechanics of Solids

Том: 56

Номер: 4

Год: 2021

Отчётный год: 2021


Местоположение издательства:


Аннотация: In mechanical autonomous conservative systems that admit a partial integral, there are sometimes stationary motions that exist both with and without a partial integral. A system is considered in which the Hess integral exists when the Appelroth equality is satisfied and the stationary motion is distinguished, which takes place even without the Appelroth equality. In the article, the stability of such a stationary motion is studied by the second Lyapunov method. It is found that the boundary of the region of sufficient stability conditions does not coincide with the boundary of the region of necessary stability conditions.

Индексируется WOS: 1

Индексируется Scopus: 1

Индексируется РИНЦ: 0

Публикация в печати: 0

Добавил в систему: