Страница публикации

An Approximate Method for Solving Optimal Control Problems for Discrete Systems Based on Local Approximation of an Attainability Set

Авторы: Baturin V.A.


Том: 19


Год: 2017

Отчётный год: 2017


Местоположение издательства:


Аннотация: An optimal control problem for discrete systems is considered. A method of successive improvements along with its modernization based on the expansion of the main structures of the core algorithm about the parameter is suggested. The idea of the method is based on local approximation of attainability set, which is described by the zeros of the Bellman function in the special problem of optimal control. The essence of the problem is as follows: from the end point of the phase is required to find a path that minimizes functional deviations of the norm from the initial state. If the initial point belongs to the attainability set of the original controlled system, the value of the Bellman function equal to zero, otherwise the value of the Bellman function is greater than zero. For this special task Bellman equation is considered. The support approximation and Bellman equation are selected. The Bellman function is approximated by quadratic terms. Along the allowable trajectory, this approximation gives nothing, because Bellman function and its expansion coefficients are zero. We used a special trick: an additional variable is introduced, which characterizes the degree of deviation of the system from the initial state, thus it is obtained expanded original chain. For the new variable initial nonzero conditions is selected, thus obtained trajectory is lying outside attainability set and relevant Bellman function is greater than zero, which allows it to hold a non-trivial approximation. As a result of these procedures algorithms of successive improvements is designed. Conditions for relaxation algorithms and conditions for the necessary conditions of optimality are also obtained.

Индексируется WOS: 1

Индексируется Scopus: 0

Индексируется РИНЦ: 0

Публикация в печати: 0

Добавил в систему: