Страница публикации
On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates
Авторы: Kazakov A.L., Kuznetsov P.A.
Журнал: Journal of Applied and Industrial Mathematics
Том: 12
Номер: 2
Год: 2018
Отчётный год: 2018
Издательство:
Местоположение издательства:
URL:
Аннотация: The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.
Индексируется WOS: 0
Индексируется Scopus: 1
Индексируется РИНЦ: 0
Публикация в печати: 0
Добавил в систему: